CHAPTER SIX

LINEAR SEQUENCE

Sequence:

-A sequence is a set of numbers or terms written in a definite order, with a rule or formula for obtaining the terms.

Example(1)

1, 3, 5, 7, 9, 11.....

- In this given sequence, each term is obtained by adding 2 to the preceding term or the previous term.

Example(2):

1, 3, 9, 27...

In this given sequence, each term is obtained by multiplying the previous term by 3.

Series:

- When all the terms of a sequence are added together, we get what we call a series.
- For example, consider the sequence 2, 4, 6, 8, 10
- If the terms of this series are added together, we shall get 2 + 4 + 6 + 8 + 10

- This is what is referred to as a series.
- Since such a series does not contain a fixed number of terms, it is referred to as an infinite series.
- Consider the sequence 2, 4, 832.
- By adding the terms together, we get the series 2 + 4 + 8 + 32.
- Since this series contains a definite number of terms, it is referred to as a finite series.

Types of sequence:

- Two types of sequence shall be considered and these are:
 - (i) Arithmetic progression (AP), which is also known as linear sequence.
 - (b) Geometric progression (G.P), which is also known as exponential sequence.

Arithmetic progression:

- In this type, any term differs from the preceding term by a constant known as the common difference.
- This common difference which is represented by d, can either be positive or negative.

Examples(1) 2, 5, 8, 11

- In this, the common difference = 5 2 = 3 or 8 5 = 3.
 Example(2) 3, 13, 23
- In this, the common difference = 13 3 = 10 or 23 13 = 10.
 Example (3) -2, -4, -6, -8
- In this case, d = -6 (-4) = -6 + 4 = -2.

- The first term of an A.P is represented by U_1 , the second term by U_2 and the third by U_3 and so on.

- With reference to A.P, the following must be taken notice of:

 $U_1 = 1^{st}$ term = a

 $U_2 = 2^{nd}$ term = a + d

 $U_3 = 3^{rd}$ term = a + 2d

$$U_4 = 4^{th} term = a + 3d$$

- $U_n = n^{th}$ term = a + (n-1)d
- The n^{th} term of an A.P is therefore given by $U_n = a+(n-1)d$.
- This is the formula for finding any term of a linear sequence.

(Q1) Find the 11th term of a linear sequence of the form 4, 9, 14, 19

Soln:

a = 4 and d = 9 - 4 = 5. From $U_n = a + (n - 1)d$ => $U_{11} = a + (11 - 1)d$ => $U_{11} = 4 + (11 - 1) \times 5$

 $=> U_{11} = 4 + 5(10) = 4 + 50$

= 54.

(Q2) Find the 20th term of the sequence 4, 6, 8, 10, 12

Soln: a = 4 and d = 6 - 4 = 2. Since $U_n = a + (n - 1)d$, then $U_{20} = 4 + (20 - 1) 2$ $U_{20} = 4 + (19) \times 2$ $=> U_{20} = 4 + 2(19)$ $=> U_{20} = 4 + 38$ $=> U_{20} = 42$.

(Q3) Find the 8th term of a linear sequence of the form 47, 42, 37, 32

Soln:

```
a = 47 and d = 42 - 47 = -5.
```

Since
$$U_n = a + (n - 1)d$$
,
=> $U_8 = 47 + (8 - 1) (-5)$
=> $U_8 = 47 + (-5)(8 - 1)$
=> $U_8 = 47 - 5(7)$
=> $U_8 = 47 - 35 = 12$

(Q4) Show that the 90^{th} term of the sequence 2, 7, 12, 17 is 447.

Soln:

a = 2 and d = 7 - 2 = 5.
From
$$U_n = a + (n - 1)d$$

=> $U_{90} = 2 + (90 - 1) 5$
=> $U_{90} = 2 + 5(89)$
=> $U_{90} = 2 + 445 = 447$.
(Q5) Find the 12th term of an A.P of the form 7, $6\frac{1}{4}, 5\frac{1}{2}...$

Soln:

a = 7, and d =
$$6\frac{1}{4}$$
 - 7 = 6.25 - 7 = -0.75
Since U_n = a + (n -1)d
=> U₁₂ = 7 + (12 -1)(-0.75)
=> U₁₂ = 7 + (11)(-0.75)
=> U₁₂ = 7 + (-8.25)
=> U₁₂ = 7 - 8.25 = -1.25.

(Q6) Find the linear sequence whose 8th term is 38 and 22nd term is 108.

Soln: $U_n = a + (n - 1)d.$ The 8th term = $U_8 = a + (8 - 1)d$ => U₈ = a+7d Since the 8^{th} term = 38 => a + 7d = 38 eqn (1). Also the 22^{nd} term = 108. $U_{22} = a + (22-1)d$ => U₂₂ = a +21d. Since the 22^{nd} term = 108. => a + 21d = 108 eqn (2) Solving eqn (1) and eqn (2) simultaneously = a = 3 and d = 5. The sequence = a, a + d, a + 2d, a + 3d = 3, 3+5, 3 + 2(5), + 3 + 3(5)

= 3, 8, 13, 18

(Q7 The fourth term of a linear sequence is 19 and the eleventh term is 54. Find the 8^{th} term.

Soln:

 $U_n = a + (n - 1)d$

The fourth term =

 $U_{4} = a + (4 - 1)d$ => $U_{4} = a + 3d$. But the fourth term = 19 => a + 3d = 19 eqn (1) The 11th term = 54. $U_{11} = a + (11 - 1)d$ => $U_{11} = a + 10d$. Since the 11th term = 54 => a + 10d = 54 eqn (2) Solving eqn (1) and eqn (2) simultaneously => d = 5 and a = 4. The 8th term of the sequence is given by $U_{8} = a + (8-1) d$

=> U₈ = a +7d => U₈ = 4 +7(5) = 4 + 35 = 39.